MakeItFrom.com
Menu (ESC)

S44660 Stainless Steel vs. EN 1.8869 Steel

Both S44660 stainless steel and EN 1.8869 steel are iron alloys. They have 67% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44660 stainless steel and the bottom bar is EN 1.8869 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
160
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 20
25
Fatigue Strength, MPa 330
260
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
73
Shear Strength, MPa 410
350
Tensile Strength: Ultimate (UTS), MPa 660
540
Tensile Strength: Yield (Proof), MPa 510
360

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
48
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 21
2.4
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 4.3
1.6
Embodied Energy, MJ/kg 61
21
Embodied Water, L/kg 180
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 640
340
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
19
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 4.5
13
Thermal Shock Resistance, points 21
16

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.030
0 to 0.16
Chromium (Cr), % 25 to 28
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 60.4 to 71
96.4 to 100
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 3.0 to 4.0
0 to 0.25
Nickel (Ni), % 1.0 to 3.5
0 to 0.5
Niobium (Nb), % 0.2 to 1.0
0 to 0.050
Nitrogen (N), % 0 to 0.040
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.0050
Titanium (Ti), % 0.2 to 1.0
0 to 0.030
Vanadium (V), % 0
0 to 0.060
Zirconium (Zr), % 0
0 to 0.050