MakeItFrom.com
Menu (ESC)

S44660 Stainless Steel vs. EN 2.4632 Nickel

S44660 stainless steel belongs to the iron alloys classification, while EN 2.4632 nickel belongs to the nickel alloys. They have a modest 24% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44660 stainless steel and the bottom bar is EN 2.4632 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 20
17
Fatigue Strength, MPa 330
430
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
76
Shear Strength, MPa 410
770
Tensile Strength: Ultimate (UTS), MPa 660
1250
Tensile Strength: Yield (Proof), MPa 510
780

Thermal Properties

Latent Heat of Fusion, J/g 300
320
Maximum Temperature: Mechanical, °C 1100
1010
Melting Completion (Liquidus), °C 1460
1340
Melting Onset (Solidus), °C 1410
1290
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
13
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 21
75
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 4.3
9.4
Embodied Energy, MJ/kg 61
130
Embodied Water, L/kg 180
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
180
Resilience: Unit (Modulus of Resilience), kJ/m3 640
1570
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 24
42
Strength to Weight: Bending, points 22
31
Thermal Diffusivity, mm2/s 4.5
3.3
Thermal Shock Resistance, points 21
39

Alloy Composition

Aluminum (Al), % 0
1.0 to 2.0
Boron (B), % 0
0 to 0.020
Carbon (C), % 0 to 0.030
0 to 0.13
Chromium (Cr), % 25 to 28
18 to 21
Cobalt (Co), % 0
15 to 21
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 60.4 to 71
0 to 1.5
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 1.0 to 3.5
49 to 64
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.2 to 1.0
2.0 to 3.0
Zirconium (Zr), % 0
0 to 0.15