MakeItFrom.com
Menu (ESC)

S44660 Stainless Steel vs. Grade 7 Titanium

S44660 stainless steel belongs to the iron alloys classification, while grade 7 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44660 stainless steel and the bottom bar is grade 7 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
150
Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 20
24
Fatigue Strength, MPa 330
250
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 81
38
Shear Strength, MPa 410
270
Tensile Strength: Ultimate (UTS), MPa 660
420
Tensile Strength: Yield (Proof), MPa 510
340

Thermal Properties

Latent Heat of Fusion, J/g 300
420
Maximum Temperature: Mechanical, °C 1100
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1410
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 17
22
Thermal Expansion, µm/m-K 11
9.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
7.2

Otherwise Unclassified Properties

Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 4.3
47
Embodied Energy, MJ/kg 61
800
Embodied Water, L/kg 180
470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
95
Resilience: Unit (Modulus of Resilience), kJ/m3 640
560
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 24
26
Strength to Weight: Bending, points 22
28
Thermal Diffusivity, mm2/s 4.5
8.9
Thermal Shock Resistance, points 21
31

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 25 to 28
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 60.4 to 71
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 1.0 to 3.5
0
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.12 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 1.0
98.7 to 99.88
Residuals, % 0
0 to 0.4