MakeItFrom.com
Menu (ESC)

S44660 Stainless Steel vs. SAE-AISI 4320 Steel

Both S44660 stainless steel and SAE-AISI 4320 steel are iron alloys. They have 69% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S44660 stainless steel and the bottom bar is SAE-AISI 4320 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
160 to 240
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 20
21 to 29
Fatigue Strength, MPa 330
320
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
73
Shear Strength, MPa 410
370 to 500
Tensile Strength: Ultimate (UTS), MPa 660
570 to 790
Tensile Strength: Yield (Proof), MPa 510
430 to 460

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
46
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 21
3.4
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 4.3
1.7
Embodied Energy, MJ/kg 61
22
Embodied Water, L/kg 180
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 640
480 to 560
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
20 to 28
Strength to Weight: Bending, points 22
19 to 24
Thermal Diffusivity, mm2/s 4.5
13
Thermal Shock Resistance, points 21
19 to 27

Alloy Composition

Carbon (C), % 0 to 0.030
0.17 to 0.22
Chromium (Cr), % 25 to 28
0.4 to 0.6
Iron (Fe), % 60.4 to 71
95.8 to 97
Manganese (Mn), % 0 to 1.0
0.45 to 0.65
Molybdenum (Mo), % 3.0 to 4.0
0.2 to 0.3
Nickel (Ni), % 1.0 to 3.5
1.7 to 2.0
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.040
Titanium (Ti), % 0.2 to 1.0
0