MakeItFrom.com
Menu (ESC)

S44660 Stainless Steel vs. C82000 Copper

S44660 stainless steel belongs to the iron alloys classification, while C82000 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44660 stainless steel and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 20
8.0 to 20
Poisson's Ratio 0.27
0.34
Rockwell B Hardness 88
55 to 95
Shear Modulus, GPa 81
45
Tensile Strength: Ultimate (UTS), MPa 660
350 to 690
Tensile Strength: Yield (Proof), MPa 510
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 300
220
Maximum Temperature: Mechanical, °C 1100
220
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1410
970
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
260
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
46

Otherwise Unclassified Properties

Base Metal Price, % relative 21
60
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 4.3
5.0
Embodied Energy, MJ/kg 61
77
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 640
80 to 1120
Stiffness to Weight: Axial, points 15
7.5
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 24
11 to 22
Strength to Weight: Bending, points 22
12 to 20
Thermal Diffusivity, mm2/s 4.5
76
Thermal Shock Resistance, points 21
12 to 24

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 25 to 28
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0
95.2 to 97.4
Iron (Fe), % 60.4 to 71
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 1.0 to 3.5
0 to 0.2
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0.2 to 1.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5