MakeItFrom.com
Menu (ESC)

S44700 Stainless Steel vs. 2024 Aluminum

S44700 stainless steel belongs to the iron alloys classification, while 2024 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44700 stainless steel and the bottom bar is 2024 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 23
4.0 to 16
Fatigue Strength, MPa 300
90 to 180
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 82
27
Shear Strength, MPa 380
130 to 320
Tensile Strength: Ultimate (UTS), MPa 600
200 to 540
Tensile Strength: Yield (Proof), MPa 450
100 to 490

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1410
500
Specific Heat Capacity, J/kg-K 480
880
Thermal Expansion, µm/m-K 11
23

Otherwise Unclassified Properties

Base Metal Price, % relative 18
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 3.6
8.3
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 180
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
20 to 68
Resilience: Unit (Modulus of Resilience), kJ/m3 480
70 to 1680
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 21
18 to 50
Strength to Weight: Bending, points 20
25 to 49
Thermal Shock Resistance, points 19
8.6 to 24

Alloy Composition

Aluminum (Al), % 0
90.7 to 94.7
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 28 to 30
0 to 0.1
Copper (Cu), % 0 to 0.15
3.8 to 4.9
Iron (Fe), % 64.9 to 68.5
0 to 0.5
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 0.3
0.3 to 0.9
Molybdenum (Mo), % 3.5 to 4.2
0
Nickel (Ni), % 0 to 0.15
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15