MakeItFrom.com
Menu (ESC)

S44700 Stainless Steel vs. 3103 Aluminum

S44700 stainless steel belongs to the iron alloys classification, while 3103 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44700 stainless steel and the bottom bar is 3103 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
27 to 62
Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 23
1.1 to 28
Fatigue Strength, MPa 300
38 to 83
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 380
68 to 130
Tensile Strength: Ultimate (UTS), MPa 600
100 to 220
Tensile Strength: Yield (Proof), MPa 450
39 to 200

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1460
660
Melting Onset (Solidus), °C 1410
640
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 11
23

Otherwise Unclassified Properties

Base Metal Price, % relative 18
9.5
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 3.6
8.2
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
2.4 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 480
11 to 280
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 21
10 to 22
Strength to Weight: Bending, points 20
18 to 30
Thermal Shock Resistance, points 19
4.6 to 9.9

Alloy Composition

Aluminum (Al), % 0
96.3 to 99.1
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 28 to 30
0 to 0.1
Copper (Cu), % 0 to 0.15
0 to 0.1
Iron (Fe), % 64.9 to 68.5
0 to 0.7
Magnesium (Mg), % 0
0 to 0.3
Manganese (Mn), % 0 to 0.3
0.9 to 1.5
Molybdenum (Mo), % 3.5 to 4.2
0
Nickel (Ni), % 0 to 0.15
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.15