MakeItFrom.com
Menu (ESC)

S44700 Stainless Steel vs. 6151 Aluminum

S44700 stainless steel belongs to the iron alloys classification, while 6151 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44700 stainless steel and the bottom bar is 6151 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 23
1.1 to 5.7
Fatigue Strength, MPa 300
80 to 100
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 380
190 to 200
Tensile Strength: Ultimate (UTS), MPa 600
330 to 340
Tensile Strength: Yield (Proof), MPa 450
270 to 280

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1410
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 11
23

Otherwise Unclassified Properties

Base Metal Price, % relative 18
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.6
8.2
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
3.5 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 480
520 to 580
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 21
34
Strength to Weight: Bending, points 20
39
Thermal Shock Resistance, points 19
15

Alloy Composition

Aluminum (Al), % 0
95.6 to 98.8
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 28 to 30
0.15 to 0.35
Copper (Cu), % 0 to 0.15
0 to 0.35
Iron (Fe), % 64.9 to 68.5
0 to 1.0
Magnesium (Mg), % 0
0.45 to 0.8
Manganese (Mn), % 0 to 0.3
0 to 0.2
Molybdenum (Mo), % 3.5 to 4.2
0
Nickel (Ni), % 0 to 0.15
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.2
0.6 to 1.2
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15