MakeItFrom.com
Menu (ESC)

S44700 Stainless Steel vs. 6162 Aluminum

S44700 stainless steel belongs to the iron alloys classification, while 6162 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44700 stainless steel and the bottom bar is 6162 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 23
6.7 to 9.1
Fatigue Strength, MPa 300
100 to 130
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 380
170 to 180
Tensile Strength: Ultimate (UTS), MPa 600
290 to 300
Tensile Strength: Yield (Proof), MPa 450
260 to 270

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1410
620
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 11
23

Otherwise Unclassified Properties

Base Metal Price, % relative 18
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.6
8.3
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
19 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 480
510 to 550
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 21
29 to 30
Strength to Weight: Bending, points 20
36
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 0
96.7 to 98.9
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 28 to 30
0 to 0.1
Copper (Cu), % 0 to 0.15
0 to 0.2
Iron (Fe), % 64.9 to 68.5
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.1
Manganese (Mn), % 0 to 0.3
0 to 0.1
Molybdenum (Mo), % 3.5 to 4.2
0
Nickel (Ni), % 0 to 0.15
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.2
0.4 to 0.8
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15