MakeItFrom.com
Menu (ESC)

S44700 Stainless Steel vs. 7204 Aluminum

S44700 stainless steel belongs to the iron alloys classification, while 7204 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44700 stainless steel and the bottom bar is 7204 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 23
11 to 13
Fatigue Strength, MPa 300
110 to 130
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 380
130 to 220
Tensile Strength: Ultimate (UTS), MPa 600
220 to 380
Tensile Strength: Yield (Proof), MPa 450
120 to 310

Thermal Properties

Latent Heat of Fusion, J/g 300
380
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1410
520
Specific Heat Capacity, J/kg-K 480
880
Thermal Expansion, µm/m-K 11
24

Otherwise Unclassified Properties

Base Metal Price, % relative 18
9.5
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 3.6
8.4
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 180
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
25 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 480
110 to 710
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 21
21 to 36
Strength to Weight: Bending, points 20
28 to 40
Thermal Shock Resistance, points 19
9.4 to 16

Alloy Composition

Aluminum (Al), % 0
90.5 to 94.8
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 28 to 30
0 to 0.3
Copper (Cu), % 0 to 0.15
0 to 0.2
Iron (Fe), % 64.9 to 68.5
0 to 0.35
Magnesium (Mg), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 0.3
0.2 to 0.7
Molybdenum (Mo), % 3.5 to 4.2
0
Nickel (Ni), % 0 to 0.15
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.2
0 to 0.3
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15