MakeItFrom.com
Menu (ESC)

S44700 Stainless Steel vs. 771.0 Aluminum

S44700 stainless steel belongs to the iron alloys classification, while 771.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44700 stainless steel and the bottom bar is 771.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
85 to 120
Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 23
1.7 to 6.5
Fatigue Strength, MPa 300
92 to 180
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 82
26
Tensile Strength: Ultimate (UTS), MPa 600
250 to 370
Tensile Strength: Yield (Proof), MPa 450
210 to 350

Thermal Properties

Latent Heat of Fusion, J/g 300
380
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1460
630
Melting Onset (Solidus), °C 1410
620
Specific Heat Capacity, J/kg-K 480
870
Thermal Expansion, µm/m-K 11
24

Otherwise Unclassified Properties

Base Metal Price, % relative 18
9.5
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 3.6
8.0
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 180
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
4.4 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 480
310 to 900
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 21
23 to 35
Strength to Weight: Bending, points 20
29 to 39
Thermal Shock Resistance, points 19
11 to 16

Alloy Composition

Aluminum (Al), % 0
90.5 to 92.5
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 28 to 30
0.060 to 0.2
Copper (Cu), % 0 to 0.15
0 to 0.1
Iron (Fe), % 64.9 to 68.5
0 to 0.15
Magnesium (Mg), % 0
0.8 to 1.0
Manganese (Mn), % 0 to 0.3
0 to 0.1
Molybdenum (Mo), % 3.5 to 4.2
0
Nickel (Ni), % 0 to 0.15
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.2
0 to 0.15
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0.1 to 0.2
Zinc (Zn), % 0
6.5 to 7.5
Residuals, % 0
0 to 0.15