MakeItFrom.com
Menu (ESC)

S44700 Stainless Steel vs. A242.0 Aluminum

S44700 stainless steel belongs to the iron alloys classification, while A242.0 aluminum belongs to the aluminum alloys. There are 22 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44700 stainless steel and the bottom bar is A242.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
75
Elastic (Young's, Tensile) Modulus, GPa 210
73
Elongation at Break, % 23
1.6
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 82
27
Tensile Strength: Ultimate (UTS), MPa 600
220

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1460
680
Melting Onset (Solidus), °C 1410
550
Specific Heat Capacity, J/kg-K 480
870
Thermal Expansion, µm/m-K 11
23

Otherwise Unclassified Properties

Base Metal Price, % relative 18
12
Density, g/cm3 7.8
3.1
Embodied Carbon, kg CO2/kg material 3.6
8.3
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 180
1130

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 21
20
Strength to Weight: Bending, points 20
26
Thermal Shock Resistance, points 19
9.3

Alloy Composition

Aluminum (Al), % 0
89.3 to 93.1
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 28 to 30
0.15 to 0.25
Copper (Cu), % 0 to 0.15
3.7 to 4.5
Iron (Fe), % 64.9 to 68.5
0 to 0.8
Magnesium (Mg), % 0
1.2 to 1.7
Manganese (Mn), % 0 to 0.3
0 to 0.1
Molybdenum (Mo), % 3.5 to 4.2
0
Nickel (Ni), % 0 to 0.15
1.8 to 2.3
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.2
0 to 0.6
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0.070 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15