MakeItFrom.com
Menu (ESC)

S44725 Stainless Steel vs. EN 1.4912 Stainless Steel

Both S44725 stainless steel and EN 1.4912 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44725 stainless steel and the bottom bar is EN 1.4912 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 22
40
Fatigue Strength, MPa 210
200
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 81
77
Shear Strength, MPa 320
420
Tensile Strength: Ultimate (UTS), MPa 500
610
Tensile Strength: Yield (Proof), MPa 310
230

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 500
520
Maximum Temperature: Mechanical, °C 1100
940
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1410
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
16
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 15
20
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.1
3.8
Embodied Energy, MJ/kg 44
55
Embodied Water, L/kg 170
140

Common Calculations

PREN (Pitting Resistance) 33
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
190
Resilience: Unit (Modulus of Resilience), kJ/m3 240
130
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
22
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 4.6
4.2
Thermal Shock Resistance, points 16
14

Alloy Composition

Carbon (C), % 0 to 0.015
0.040 to 0.1
Chromium (Cr), % 25 to 28.5
17 to 19
Iron (Fe), % 67.6 to 73.5
64.6 to 73.6
Manganese (Mn), % 0 to 0.4
0 to 2.0
Molybdenum (Mo), % 1.5 to 2.5
0
Nickel (Ni), % 0 to 0.3
9.0 to 12
Niobium (Nb), % 0 to 0.26
0.4 to 1.2
Nitrogen (N), % 0 to 0.018
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 0.040
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0 to 0.26
0