MakeItFrom.com
Menu (ESC)

S44725 Stainless Steel vs. SAE-AISI 4161 Steel

Both S44725 stainless steel and SAE-AISI 4161 steel are iron alloys. Both are furnished in the annealed condition. They have 72% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S44725 stainless steel and the bottom bar is SAE-AISI 4161 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 22
20
Fatigue Strength, MPa 210
290
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
73
Shear Strength, MPa 320
420
Tensile Strength: Ultimate (UTS), MPa 500
680
Tensile Strength: Yield (Proof), MPa 310
410

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 1100
420
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
43
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 15
2.5
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.1
1.5
Embodied Energy, MJ/kg 44
20
Embodied Water, L/kg 170
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
120
Resilience: Unit (Modulus of Resilience), kJ/m3 240
460
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 4.6
12
Thermal Shock Resistance, points 16
22

Alloy Composition

Carbon (C), % 0 to 0.015
0.56 to 0.64
Chromium (Cr), % 25 to 28.5
0.7 to 0.9
Iron (Fe), % 67.6 to 73.5
96.7 to 97.6
Manganese (Mn), % 0 to 0.4
0.75 to 1.0
Molybdenum (Mo), % 1.5 to 2.5
0.25 to 0.35
Nickel (Ni), % 0 to 0.3
0
Niobium (Nb), % 0 to 0.26
0
Nitrogen (N), % 0 to 0.018
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 0.040
0.15 to 0.35
Sulfur (S), % 0 to 0.020
0 to 0.040
Titanium (Ti), % 0 to 0.26
0