MakeItFrom.com
Menu (ESC)

S44735 Stainless Steel vs. 2095 Aluminum

S44735 stainless steel belongs to the iron alloys classification, while 2095 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44735 stainless steel and the bottom bar is 2095 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 21
8.5
Fatigue Strength, MPa 300
200
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 390
410
Tensile Strength: Ultimate (UTS), MPa 630
700
Tensile Strength: Yield (Proof), MPa 460
610

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1460
660
Melting Onset (Solidus), °C 1420
540
Specific Heat Capacity, J/kg-K 480
910
Thermal Expansion, µm/m-K 11
23

Otherwise Unclassified Properties

Base Metal Price, % relative 21
31
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 4.4
8.6
Embodied Energy, MJ/kg 61
160
Embodied Water, L/kg 180
1470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
57
Resilience: Unit (Modulus of Resilience), kJ/m3 520
2640
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
46
Strength to Weight: Axial, points 23
65
Strength to Weight: Bending, points 21
59
Thermal Shock Resistance, points 20
31

Alloy Composition

Aluminum (Al), % 0
91.3 to 94.9
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0
3.9 to 4.6
Iron (Fe), % 60.7 to 68.4
0 to 0.15
Lithium (Li), % 0
0.7 to 1.5
Magnesium (Mg), % 0
0.25 to 0.8
Manganese (Mn), % 0 to 1.0
0 to 0.25
Molybdenum (Mo), % 3.6 to 4.2
0
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.12
Silver (Ag), % 0
0.25 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 1.0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.18
Residuals, % 0
0 to 0.15