MakeItFrom.com
Menu (ESC)

S44735 Stainless Steel vs. 2618 Aluminum

S44735 stainless steel belongs to the iron alloys classification, while 2618 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44735 stainless steel and the bottom bar is 2618 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
120
Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 21
5.8
Fatigue Strength, MPa 300
110
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 82
27
Shear Strength, MPa 390
260
Tensile Strength: Ultimate (UTS), MPa 630
420
Tensile Strength: Yield (Proof), MPa 460
350

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Expansion, µm/m-K 11
22

Otherwise Unclassified Properties

Base Metal Price, % relative 21
11
Density, g/cm3 7.7
2.9
Embodied Carbon, kg CO2/kg material 4.4
8.3
Embodied Energy, MJ/kg 61
150
Embodied Water, L/kg 180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
23
Resilience: Unit (Modulus of Resilience), kJ/m3 520
850
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
47
Strength to Weight: Axial, points 23
40
Strength to Weight: Bending, points 21
42
Thermal Shock Resistance, points 20
19

Alloy Composition

Aluminum (Al), % 0
92.4 to 94.9
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0
1.9 to 2.7
Iron (Fe), % 60.7 to 68.4
0.9 to 1.3
Magnesium (Mg), % 0
1.3 to 1.8
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.6 to 4.2
0
Nickel (Ni), % 0 to 1.0
0.9 to 1.2
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.1 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 1.0
0.040 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15