MakeItFrom.com
Menu (ESC)

S44735 Stainless Steel vs. 5059 Aluminum

S44735 stainless steel belongs to the iron alloys classification, while 5059 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44735 stainless steel and the bottom bar is 5059 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 21
11 to 25
Fatigue Strength, MPa 300
170 to 240
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 390
220 to 250
Tensile Strength: Ultimate (UTS), MPa 630
350 to 410
Tensile Strength: Yield (Proof), MPa 460
170 to 300

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Corrosion, °C 650
65
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1420
510
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 11
24

Otherwise Unclassified Properties

Base Metal Price, % relative 21
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 4.4
9.1
Embodied Energy, MJ/kg 61
160
Embodied Water, L/kg 180
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 520
220 to 650
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
50
Strength to Weight: Axial, points 23
36 to 42
Strength to Weight: Bending, points 21
41 to 45
Thermal Shock Resistance, points 20
16 to 18

Alloy Composition

Aluminum (Al), % 0
89.9 to 94
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 30
0 to 0.25
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 60.7 to 68.4
0 to 0.5
Magnesium (Mg), % 0
5.0 to 6.0
Manganese (Mn), % 0 to 1.0
0.6 to 1.2
Molybdenum (Mo), % 3.6 to 4.2
0
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.45
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 1.0
0 to 0.2
Zinc (Zn), % 0
0.4 to 0.9
Zirconium (Zr), % 0
0.050 to 0.25
Residuals, % 0
0 to 0.15