MakeItFrom.com
Menu (ESC)

S44735 Stainless Steel vs. 5251 Aluminum

S44735 stainless steel belongs to the iron alloys classification, while 5251 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44735 stainless steel and the bottom bar is 5251 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
44 to 79
Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 21
2.0 to 19
Fatigue Strength, MPa 300
59 to 110
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 390
110 to 160
Tensile Strength: Ultimate (UTS), MPa 630
180 to 280
Tensile Strength: Yield (Proof), MPa 460
67 to 250

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1420
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 11
24

Otherwise Unclassified Properties

Base Metal Price, % relative 21
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 4.4
8.5
Embodied Energy, MJ/kg 61
150
Embodied Water, L/kg 180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
5.4 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 520
33 to 450
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
50
Strength to Weight: Axial, points 23
18 to 29
Strength to Weight: Bending, points 21
26 to 35
Thermal Shock Resistance, points 20
7.9 to 13

Alloy Composition

Aluminum (Al), % 0
95.5 to 98.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 30
0 to 0.15
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 60.7 to 68.4
0 to 0.5
Magnesium (Mg), % 0
1.7 to 2.4
Manganese (Mn), % 0 to 1.0
0.1 to 0.5
Molybdenum (Mo), % 3.6 to 4.2
0
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 1.0
0 to 0.15
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15