MakeItFrom.com
Menu (ESC)

S44735 Stainless Steel vs. 6351 Aluminum

S44735 stainless steel belongs to the iron alloys classification, while 6351 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44735 stainless steel and the bottom bar is 6351 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 21
7.8 to 18
Fatigue Strength, MPa 300
79 to 130
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 390
84 to 200
Tensile Strength: Ultimate (UTS), MPa 630
140 to 310
Tensile Strength: Yield (Proof), MPa 460
95 to 270

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1420
570
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 11
23

Otherwise Unclassified Properties

Base Metal Price, % relative 21
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 4.4
8.3
Embodied Energy, MJ/kg 61
150
Embodied Water, L/kg 180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
20 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 520
65 to 540
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
50
Strength to Weight: Axial, points 23
14 to 32
Strength to Weight: Bending, points 21
22 to 38
Thermal Shock Resistance, points 20
6.1 to 14

Alloy Composition

Aluminum (Al), % 0
96 to 98.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 60.7 to 68.4
0 to 0.5
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 1.0
0.4 to 0.8
Molybdenum (Mo), % 3.6 to 4.2
0
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.7 to 1.3
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 1.0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15