MakeItFrom.com
Menu (ESC)

S44735 Stainless Steel vs. 7003 Aluminum

S44735 stainless steel belongs to the iron alloys classification, while 7003 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44735 stainless steel and the bottom bar is 7003 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 21
11
Fatigue Strength, MPa 300
130 to 150
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 82
26
Shear Strength, MPa 390
210 to 230
Tensile Strength: Ultimate (UTS), MPa 630
350 to 390
Tensile Strength: Yield (Proof), MPa 460
300 to 310

Thermal Properties

Latent Heat of Fusion, J/g 310
380
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1460
630
Melting Onset (Solidus), °C 1420
510
Specific Heat Capacity, J/kg-K 480
870
Thermal Expansion, µm/m-K 11
24

Otherwise Unclassified Properties

Base Metal Price, % relative 21
9.5
Density, g/cm3 7.7
2.9
Embodied Carbon, kg CO2/kg material 4.4
8.1
Embodied Energy, MJ/kg 61
150
Embodied Water, L/kg 180
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
37 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 520
630 to 710
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
47
Strength to Weight: Axial, points 23
33 to 37
Strength to Weight: Bending, points 21
37 to 40
Thermal Shock Resistance, points 20
15 to 17

Alloy Composition

Aluminum (Al), % 0
90.6 to 94.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 30
0 to 0.2
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 60.7 to 68.4
0 to 0.35
Magnesium (Mg), % 0
0.5 to 1.0
Manganese (Mn), % 0 to 1.0
0 to 0.3
Molybdenum (Mo), % 3.6 to 4.2
0
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 1.0
0 to 0.2
Zinc (Zn), % 0
5.0 to 6.5
Zirconium (Zr), % 0
0.050 to 0.25
Residuals, % 0
0 to 0.15