MakeItFrom.com
Menu (ESC)

S44735 Stainless Steel vs. 7010 Aluminum

S44735 stainless steel belongs to the iron alloys classification, while 7010 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44735 stainless steel and the bottom bar is 7010 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 21
3.9 to 6.8
Fatigue Strength, MPa 300
160 to 190
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 82
26
Shear Strength, MPa 390
300 to 340
Tensile Strength: Ultimate (UTS), MPa 630
520 to 590
Tensile Strength: Yield (Proof), MPa 460
410 to 540

Thermal Properties

Latent Heat of Fusion, J/g 310
380
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1460
630
Melting Onset (Solidus), °C 1420
480
Specific Heat Capacity, J/kg-K 480
860
Thermal Expansion, µm/m-K 11
24

Otherwise Unclassified Properties

Base Metal Price, % relative 21
10
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 4.4
8.3
Embodied Energy, MJ/kg 61
150
Embodied Water, L/kg 180
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
22 to 33
Resilience: Unit (Modulus of Resilience), kJ/m3 520
1230 to 2130
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
45
Strength to Weight: Axial, points 23
47 to 54
Strength to Weight: Bending, points 21
47 to 52
Thermal Shock Resistance, points 20
22 to 26

Alloy Composition

Aluminum (Al), % 0
87.9 to 90.6
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 30
0 to 0.050
Copper (Cu), % 0
1.5 to 2.0
Iron (Fe), % 60.7 to 68.4
0 to 0.15
Magnesium (Mg), % 0
2.1 to 2.6
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 3.6 to 4.2
0
Nickel (Ni), % 0 to 1.0
0 to 0.050
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.12
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 1.0
0 to 0.060
Zinc (Zn), % 0
5.7 to 6.7
Zirconium (Zr), % 0
0.1 to 0.16
Residuals, % 0
0 to 0.15