MakeItFrom.com
Menu (ESC)

S44735 Stainless Steel vs. EN 1.8833 Steel

Both S44735 stainless steel and EN 1.8833 steel are iron alloys. They have 66% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S44735 stainless steel and the bottom bar is EN 1.8833 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
160
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 21
25
Fatigue Strength, MPa 300
280
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 82
73
Shear Strength, MPa 390
340
Tensile Strength: Ultimate (UTS), MPa 630
530
Tensile Strength: Yield (Proof), MPa 460
390

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 11
13

Otherwise Unclassified Properties

Base Metal Price, % relative 21
2.3
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 4.4
1.6
Embodied Energy, MJ/kg 61
21
Embodied Water, L/kg 180
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 520
400
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
24
Strength to Weight: Axial, points 23
19
Strength to Weight: Bending, points 21
19
Thermal Shock Resistance, points 20
16

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.030
Carbon (C), % 0 to 0.030
0 to 0.14
Chromium (Cr), % 28 to 30
0
Iron (Fe), % 60.7 to 68.4
96.8 to 99.98
Manganese (Mn), % 0 to 1.0
0 to 1.6
Molybdenum (Mo), % 3.6 to 4.2
0 to 0.2
Nickel (Ni), % 0 to 1.0
0 to 0.5
Niobium (Nb), % 0.2 to 1.0
0 to 0.050
Nitrogen (N), % 0 to 0.045
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.0050
Titanium (Ti), % 0.2 to 1.0
0 to 0.050
Vanadium (V), % 0
0 to 0.1