MakeItFrom.com
Menu (ESC)

S44735 Stainless Steel vs. EN 1.8837 Steel

Both S44735 stainless steel and EN 1.8837 steel are iron alloys. They have 66% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S44735 stainless steel and the bottom bar is EN 1.8837 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
190
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 21
19
Fatigue Strength, MPa 300
340
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 82
73
Shear Strength, MPa 390
390
Tensile Strength: Ultimate (UTS), MPa 630
630
Tensile Strength: Yield (Proof), MPa 460
490

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 11
13

Otherwise Unclassified Properties

Base Metal Price, % relative 21
2.3
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 4.4
1.6
Embodied Energy, MJ/kg 61
21
Embodied Water, L/kg 180
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 520
640
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
24
Strength to Weight: Axial, points 23
22
Strength to Weight: Bending, points 21
21
Thermal Shock Resistance, points 20
18

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.040
Carbon (C), % 0 to 0.030
0 to 0.16
Chromium (Cr), % 28 to 30
0
Iron (Fe), % 60.7 to 68.4
96.6 to 99.98
Manganese (Mn), % 0 to 1.0
0 to 1.7
Molybdenum (Mo), % 3.6 to 4.2
0 to 0.2
Nickel (Ni), % 0 to 1.0
0 to 0.5
Niobium (Nb), % 0.2 to 1.0
0 to 0.050
Nitrogen (N), % 0 to 0.045
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.0050
Titanium (Ti), % 0.2 to 1.0
0 to 0.050
Vanadium (V), % 0
0 to 0.1