MakeItFrom.com
Menu (ESC)

S44735 Stainless Steel vs. EN AC-48000 Aluminum

S44735 stainless steel belongs to the iron alloys classification, while EN AC-48000 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44735 stainless steel and the bottom bar is EN AC-48000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 210
73
Elongation at Break, % 21
1.0
Fatigue Strength, MPa 300
85 to 86
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 82
28
Tensile Strength: Ultimate (UTS), MPa 630
220 to 310
Tensile Strength: Yield (Proof), MPa 460
210 to 270

Thermal Properties

Latent Heat of Fusion, J/g 310
570
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1460
600
Melting Onset (Solidus), °C 1420
560
Specific Heat Capacity, J/kg-K 480
890
Thermal Expansion, µm/m-K 11
21

Otherwise Unclassified Properties

Base Metal Price, % relative 21
10
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 4.4
7.9
Embodied Energy, MJ/kg 61
140
Embodied Water, L/kg 180
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
2.2 to 3.0
Resilience: Unit (Modulus of Resilience), kJ/m3 520
300 to 510
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 26
53
Strength to Weight: Axial, points 23
23 to 33
Strength to Weight: Bending, points 21
31 to 39
Thermal Shock Resistance, points 20
10 to 15

Alloy Composition

Aluminum (Al), % 0
80.4 to 87.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0
0.8 to 1.5
Iron (Fe), % 60.7 to 68.4
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.5
Manganese (Mn), % 0 to 1.0
0 to 0.35
Molybdenum (Mo), % 3.6 to 4.2
0
Nickel (Ni), % 0 to 1.0
0.7 to 1.3
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
10.5 to 13.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 1.0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15