MakeItFrom.com
Menu (ESC)

S44800 Stainless Steel vs. 5251 Aluminum

S44800 stainless steel belongs to the iron alloys classification, while 5251 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44800 stainless steel and the bottom bar is 5251 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
44 to 79
Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 23
2.0 to 19
Fatigue Strength, MPa 300
59 to 110
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 370
110 to 160
Tensile Strength: Ultimate (UTS), MPa 590
180 to 280
Tensile Strength: Yield (Proof), MPa 450
67 to 250

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1410
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 17
150
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
37
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
120

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.8
8.5
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
5.4 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 480
33 to 450
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 21
18 to 29
Strength to Weight: Bending, points 20
26 to 35
Thermal Diffusivity, mm2/s 4.6
61
Thermal Shock Resistance, points 19
7.9 to 13

Alloy Composition

Aluminum (Al), % 0
95.5 to 98.2
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 28 to 30
0 to 0.15
Copper (Cu), % 0 to 0.15
0 to 0.15
Iron (Fe), % 62.6 to 66.5
0 to 0.5
Magnesium (Mg), % 0
1.7 to 2.4
Manganese (Mn), % 0 to 0.3
0.1 to 0.5
Molybdenum (Mo), % 3.5 to 4.2
0
Nickel (Ni), % 2.0 to 2.5
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.2
0 to 0.4
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15