MakeItFrom.com
Menu (ESC)

S44800 Stainless Steel vs. AISI 310S Stainless Steel

Both S44800 stainless steel and AISI 310S stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44800 stainless steel and the bottom bar is AISI 310S stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
170 to 210
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 23
34 to 44
Fatigue Strength, MPa 300
250 to 280
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 82
79
Shear Strength, MPa 370
420 to 470
Tensile Strength: Ultimate (UTS), MPa 590
600 to 710
Tensile Strength: Yield (Proof), MPa 450
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 300
310
Maximum Temperature: Corrosion, °C 460
450
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
16
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
25
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.8
4.3
Embodied Energy, MJ/kg 52
61
Embodied Water, L/kg 190
190

Common Calculations

PREN (Pitting Resistance) 42
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 480
190 to 310
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
21 to 25
Strength to Weight: Bending, points 20
20 to 22
Thermal Diffusivity, mm2/s 4.6
4.1
Thermal Shock Resistance, points 19
14 to 16

Alloy Composition

Carbon (C), % 0 to 0.010
0 to 0.080
Chromium (Cr), % 28 to 30
24 to 26
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 62.6 to 66.5
48.3 to 57
Manganese (Mn), % 0 to 0.3
0 to 2.0
Molybdenum (Mo), % 3.5 to 4.2
0
Nickel (Ni), % 2.0 to 2.5
19 to 22
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 0.2
0 to 1.5
Sulfur (S), % 0 to 0.020
0 to 0.030