MakeItFrom.com
Menu (ESC)

S44800 Stainless Steel vs. EN 1.0644 Steel

Both S44800 stainless steel and EN 1.0644 steel are iron alloys. They have 65% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44800 stainless steel and the bottom bar is EN 1.0644 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
200
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 23
17
Fatigue Strength, MPa 300
380
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 82
73
Shear Strength, MPa 370
420
Tensile Strength: Ultimate (UTS), MPa 590
690
Tensile Strength: Yield (Proof), MPa 450
570

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
47
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
2.4
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.8
Embodied Energy, MJ/kg 52
24
Embodied Water, L/kg 190
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 480
870
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
24
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.6
13
Thermal Shock Resistance, points 19
22

Alloy Composition

Aluminum (Al), % 0
0.010 to 0.050
Carbon (C), % 0 to 0.010
0.16 to 0.22
Chromium (Cr), % 28 to 30
0 to 0.3
Copper (Cu), % 0 to 0.15
0 to 0.3
Iron (Fe), % 62.6 to 66.5
96.1 to 98.4
Manganese (Mn), % 0 to 0.3
1.3 to 1.7
Molybdenum (Mo), % 3.5 to 4.2
0 to 0.080
Nickel (Ni), % 2.0 to 2.5
0 to 0.4
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0 to 0.020
0 to 0.020
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.2
0.1 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.035
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0.080 to 0.15