MakeItFrom.com
Menu (ESC)

S44800 Stainless Steel vs. EN 1.4905 Stainless Steel

Both S44800 stainless steel and EN 1.4905 stainless steel are iron alloys. They have 75% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44800 stainless steel and the bottom bar is EN 1.4905 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 23
19
Fatigue Strength, MPa 300
330
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 82
76
Shear Strength, MPa 370
460
Tensile Strength: Ultimate (UTS), MPa 590
740
Tensile Strength: Yield (Proof), MPa 450
510

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Corrosion, °C 460
380
Maximum Temperature: Mechanical, °C 1100
660
Melting Completion (Liquidus), °C 1460
1480
Melting Onset (Solidus), °C 1410
1440
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
26
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
4.2

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.8
2.8
Embodied Energy, MJ/kg 52
40
Embodied Water, L/kg 190
90

Common Calculations

PREN (Pitting Resistance) 42
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
130
Resilience: Unit (Modulus of Resilience), kJ/m3 480
680
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
26
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 4.6
7.0
Thermal Shock Resistance, points 19
25

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Boron (B), % 0
0.00050 to 0.0050
Carbon (C), % 0 to 0.010
0.090 to 0.13
Chromium (Cr), % 28 to 30
8.5 to 9.5
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 62.6 to 66.5
86.2 to 88.8
Manganese (Mn), % 0 to 0.3
0.3 to 0.6
Molybdenum (Mo), % 3.5 to 4.2
0.9 to 1.1
Nickel (Ni), % 2.0 to 2.5
0.1 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0 to 0.020
0.050 to 0.090
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.2
0.1 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.010
Tungsten (W), % 0
0.9 to 1.1
Vanadium (V), % 0
0.18 to 0.25