MakeItFrom.com
Menu (ESC)

S44800 Stainless Steel vs. EN 1.8879 Steel

Both S44800 stainless steel and EN 1.8879 steel are iron alloys. They have 67% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44800 stainless steel and the bottom bar is EN 1.8879 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
250
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 23
16
Fatigue Strength, MPa 300
460
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 82
73
Shear Strength, MPa 370
510
Tensile Strength: Ultimate (UTS), MPa 590
830
Tensile Strength: Yield (Proof), MPa 450
710

Thermal Properties

Latent Heat of Fusion, J/g 300
260
Maximum Temperature: Mechanical, °C 1100
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
40
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
3.7
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.9
Embodied Energy, MJ/kg 52
26
Embodied Water, L/kg 190
54

Common Calculations

PREN (Pitting Resistance) 42
2.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 480
1320
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
29
Strength to Weight: Bending, points 20
25
Thermal Diffusivity, mm2/s 4.6
11
Thermal Shock Resistance, points 19
24

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.010
0 to 0.2
Chromium (Cr), % 28 to 30
0 to 1.5
Copper (Cu), % 0 to 0.15
0 to 0.3
Iron (Fe), % 62.6 to 66.5
91.9 to 100
Manganese (Mn), % 0 to 0.3
0 to 1.7
Molybdenum (Mo), % 3.5 to 4.2
0 to 0.7
Nickel (Ni), % 2.0 to 2.5
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0 to 0.020
0 to 0.015
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.2
0 to 0.8
Sulfur (S), % 0 to 0.020
0 to 0.010
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zirconium (Zr), % 0
0 to 0.15