MakeItFrom.com
Menu (ESC)

S44800 Stainless Steel vs. C86500 Bronze

S44800 stainless steel belongs to the iron alloys classification, while C86500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S44800 stainless steel and the bottom bar is C86500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 23
25
Poisson's Ratio 0.27
0.3
Shear Modulus, GPa 82
40
Tensile Strength: Ultimate (UTS), MPa 590
530
Tensile Strength: Yield (Proof), MPa 450
190

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1460
880
Melting Onset (Solidus), °C 1410
860
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
86
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
22
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
25

Otherwise Unclassified Properties

Base Metal Price, % relative 19
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.8
2.8
Embodied Energy, MJ/kg 52
48
Embodied Water, L/kg 190
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 480
180
Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21
19
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 4.6
28
Thermal Shock Resistance, points 19
17

Alloy Composition

Aluminum (Al), % 0
0.5 to 1.5
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0 to 0.15
55 to 60
Iron (Fe), % 62.6 to 66.5
0.4 to 2.0
Lead (Pb), % 0
0 to 0.4
Manganese (Mn), % 0 to 0.3
0.1 to 1.5
Molybdenum (Mo), % 3.5 to 4.2
0
Nickel (Ni), % 2.0 to 2.5
0 to 1.0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.2
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 1.0
Zinc (Zn), % 0
36 to 42
Residuals, % 0
0 to 1.0