MakeItFrom.com
Menu (ESC)

S44800 Stainless Steel vs. C87300 Bronze

S44800 stainless steel belongs to the iron alloys classification, while C87300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S44800 stainless steel and the bottom bar is C87300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 23
22
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 82
43
Tensile Strength: Ultimate (UTS), MPa 590
350
Tensile Strength: Yield (Proof), MPa 450
140

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1460
970
Melting Onset (Solidus), °C 1410
820
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 17
28
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
6.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
29
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 3.8
2.7
Embodied Energy, MJ/kg 52
42
Embodied Water, L/kg 190
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
62
Resilience: Unit (Modulus of Resilience), kJ/m3 480
86
Stiffness to Weight: Axial, points 15
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21
11
Strength to Weight: Bending, points 20
13
Thermal Diffusivity, mm2/s 4.6
8.0
Thermal Shock Resistance, points 19
13

Alloy Composition

Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0 to 0.15
94 to 95.7
Iron (Fe), % 62.6 to 66.5
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 0.3
0.8 to 1.5
Molybdenum (Mo), % 3.5 to 4.2
0
Nickel (Ni), % 2.0 to 2.5
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.2
3.5 to 5.0
Sulfur (S), % 0 to 0.020
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.5