MakeItFrom.com
Menu (ESC)

S44800 Stainless Steel vs. R30155 Cobalt

Both S44800 stainless steel and R30155 cobalt are iron alloys. They have 57% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S44800 stainless steel and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
220
Elastic (Young's, Tensile) Modulus, GPa 210
210
Elongation at Break, % 23
34
Fatigue Strength, MPa 300
310
Poisson's Ratio 0.27
0.29
Reduction in Area, % 45
34
Shear Modulus, GPa 82
81
Shear Strength, MPa 370
570
Tensile Strength: Ultimate (UTS), MPa 590
850
Tensile Strength: Yield (Proof), MPa 450
390

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 460
570
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 17
12
Thermal Expansion, µm/m-K 11
14

Otherwise Unclassified Properties

Base Metal Price, % relative 19
80
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 3.8
9.7
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 190
300

Common Calculations

PREN (Pitting Resistance) 42
37
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
230
Resilience: Unit (Modulus of Resilience), kJ/m3 480
370
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 21
28
Strength to Weight: Bending, points 20
24
Thermal Diffusivity, mm2/s 4.6
3.2
Thermal Shock Resistance, points 19
21

Alloy Composition

Carbon (C), % 0 to 0.010
0.080 to 0.16
Chromium (Cr), % 28 to 30
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 62.6 to 66.5
24.3 to 36.2
Manganese (Mn), % 0 to 0.3
1.0 to 2.0
Molybdenum (Mo), % 3.5 to 4.2
2.5 to 3.5
Nickel (Ni), % 2.0 to 2.5
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0 to 0.020
0 to 0.2
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Tantalum (Ta), % 0
0.75 to 1.3
Tungsten (W), % 0
2.0 to 3.0