MakeItFrom.com
Menu (ESC)

S45000 Stainless Steel vs. 4006 Aluminum

S45000 stainless steel belongs to the iron alloys classification, while 4006 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S45000 stainless steel and the bottom bar is 4006 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 410
28 to 45
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 6.8 to 14
3.4 to 24
Fatigue Strength, MPa 330 to 650
35 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 590 to 830
70 to 91
Tensile Strength: Ultimate (UTS), MPa 980 to 1410
110 to 160
Tensile Strength: Yield (Proof), MPa 580 to 1310
62 to 140

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 840
160
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
620
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 17
220
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
56
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
180

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.0
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.1
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 130
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 160
5.1 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4400
28 to 130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 35 to 50
11 to 16
Strength to Weight: Bending, points 28 to 36
19 to 24
Thermal Diffusivity, mm2/s 4.5
89
Thermal Shock Resistance, points 33 to 47
4.9 to 7.0

Alloy Composition

Aluminum (Al), % 0
97.4 to 98.7
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 14 to 16
0 to 0.2
Copper (Cu), % 1.3 to 1.8
0 to 0.1
Iron (Fe), % 72.1 to 79.3
0.5 to 0.8
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 5.0 to 7.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.8 to 1.2
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15

Comparable Variants