MakeItFrom.com
Menu (ESC)

S45000 Stainless Steel vs. A206.0 Aluminum

S45000 stainless steel belongs to the iron alloys classification, while A206.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S45000 stainless steel and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 410
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 6.8 to 14
4.2 to 10
Fatigue Strength, MPa 330 to 650
90 to 180
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 590 to 830
260
Tensile Strength: Ultimate (UTS), MPa 980 to 1410
390 to 440
Tensile Strength: Yield (Proof), MPa 580 to 1310
250 to 380

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 840
170
Melting Completion (Liquidus), °C 1440
670
Melting Onset (Solidus), °C 1390
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 17
130
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
90

Otherwise Unclassified Properties

Base Metal Price, % relative 13
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 2.8
8.0
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 130
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 160
16 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4400
440 to 1000
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 35 to 50
36 to 41
Strength to Weight: Bending, points 28 to 36
39 to 43
Thermal Diffusivity, mm2/s 4.5
48
Thermal Shock Resistance, points 33 to 47
17 to 19

Alloy Composition

Aluminum (Al), % 0
93.9 to 95.7
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 1.3 to 1.8
4.2 to 5.0
Iron (Fe), % 72.1 to 79.3
0 to 0.1
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 1.0
0 to 0.2
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 5.0 to 7.0
0 to 0.050
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15