MakeItFrom.com
Menu (ESC)

S45000 Stainless Steel vs. Grade 1 Titanium

S45000 stainless steel belongs to the iron alloys classification, while grade 1 titanium belongs to the titanium alloys. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S45000 stainless steel and the bottom bar is grade 1 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 410
120
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 6.8 to 14
28
Fatigue Strength, MPa 330 to 650
170
Poisson's Ratio 0.28
0.32
Reduction in Area, % 22 to 50
36
Shear Modulus, GPa 76
39
Shear Strength, MPa 590 to 830
200
Tensile Strength: Ultimate (UTS), MPa 980 to 1410
310
Tensile Strength: Yield (Proof), MPa 580 to 1310
220

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 840
320
Melting Completion (Liquidus), °C 1440
1660
Melting Onset (Solidus), °C 1390
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 17
20
Thermal Expansion, µm/m-K 11
8.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.8
31
Embodied Energy, MJ/kg 39
510
Embodied Water, L/kg 130
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 160
79
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4400
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 35 to 50
19
Strength to Weight: Bending, points 28 to 36
23
Thermal Diffusivity, mm2/s 4.5
8.2
Thermal Shock Resistance, points 33 to 47
24

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 1.3 to 1.8
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 72.1 to 79.3
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 5.0 to 7.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
99.095 to 100
Residuals, % 0
0 to 0.4