MakeItFrom.com
Menu (ESC)

S45000 Stainless Steel vs. Grade Ti-Pd16 Titanium

S45000 stainless steel belongs to the iron alloys classification, while grade Ti-Pd16 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S45000 stainless steel and the bottom bar is grade Ti-Pd16 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 410
180
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 6.8 to 14
17
Fatigue Strength, MPa 330 to 650
200
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 980 to 1410
390
Tensile Strength: Yield (Proof), MPa 580 to 1310
310

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 840
320
Melting Completion (Liquidus), °C 1440
1660
Melting Onset (Solidus), °C 1390
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 17
22
Thermal Expansion, µm/m-K 11
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
7.1

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.8
36
Embodied Energy, MJ/kg 39
600
Embodied Water, L/kg 130
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 160
62
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4400
440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 35 to 50
24
Strength to Weight: Bending, points 28 to 36
26
Thermal Diffusivity, mm2/s 4.5
8.9
Thermal Shock Resistance, points 33 to 47
30

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.1
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 1.3 to 1.8
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 72.1 to 79.3
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 5.0 to 7.0
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.8 to 99.96
Residuals, % 0
0 to 0.4