MakeItFrom.com
Menu (ESC)

S45000 Stainless Steel vs. C31400 Bronze

S45000 stainless steel belongs to the iron alloys classification, while C31400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S45000 stainless steel and the bottom bar is C31400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 6.8 to 14
6.8 to 29
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 590 to 830
180 to 240
Tensile Strength: Ultimate (UTS), MPa 980 to 1410
270 to 420
Tensile Strength: Yield (Proof), MPa 580 to 1310
78 to 310

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 840
180
Melting Completion (Liquidus), °C 1440
1040
Melting Onset (Solidus), °C 1390
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 17
180
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
42
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
43

Otherwise Unclassified Properties

Base Metal Price, % relative 13
29
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 39
42
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 160
26 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4400
28 to 420
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 35 to 50
8.7 to 13
Strength to Weight: Bending, points 28 to 36
11 to 14
Thermal Diffusivity, mm2/s 4.5
54
Thermal Shock Resistance, points 33 to 47
9.6 to 15

Alloy Composition

Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 1.3 to 1.8
87.5 to 90.5
Iron (Fe), % 72.1 to 79.3
0 to 0.1
Lead (Pb), % 0
1.3 to 2.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 5.0 to 7.0
0 to 0.7
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
5.8 to 11.2
Residuals, % 0
0 to 0.4