MakeItFrom.com
Menu (ESC)

S45000 Stainless Steel vs. C68100 Brass

S45000 stainless steel belongs to the iron alloys classification, while C68100 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S45000 stainless steel and the bottom bar is C68100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 6.8 to 14
29
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 980 to 1410
380
Tensile Strength: Yield (Proof), MPa 580 to 1310
140

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 840
120
Melting Completion (Liquidus), °C 1440
890
Melting Onset (Solidus), °C 1390
870
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
98
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
24
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
27

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 39
47
Embodied Water, L/kg 130
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 160
86
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4400
94
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 35 to 50
13
Strength to Weight: Bending, points 28 to 36
15
Thermal Diffusivity, mm2/s 4.5
32
Thermal Shock Resistance, points 33 to 47
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 1.3 to 1.8
56 to 60
Iron (Fe), % 72.1 to 79.3
0.25 to 1.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0.010 to 0.5
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 5.0 to 7.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.040 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.75 to 1.1
Zinc (Zn), % 0
36.4 to 43
Residuals, % 0
0 to 0.5