MakeItFrom.com
Menu (ESC)

S45000 Stainless Steel vs. C87600 Bronze

S45000 stainless steel belongs to the iron alloys classification, while C87600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S45000 stainless steel and the bottom bar is C87600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 6.8 to 14
18
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 980 to 1410
470
Tensile Strength: Yield (Proof), MPa 580 to 1310
230

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Mechanical, °C 840
190
Melting Completion (Liquidus), °C 1440
970
Melting Onset (Solidus), °C 1390
860
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 17
28
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 13
29
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 39
43
Embodied Water, L/kg 130
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 160
71
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4400
240
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 35 to 50
16
Strength to Weight: Bending, points 28 to 36
16
Thermal Diffusivity, mm2/s 4.5
8.1
Thermal Shock Resistance, points 33 to 47
17

Alloy Composition

Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 1.3 to 1.8
88 to 92.5
Iron (Fe), % 72.1 to 79.3
0
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 5.0 to 7.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
3.5 to 5.5
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
4.0 to 7.0
Residuals, % 0
0 to 0.5