MakeItFrom.com
Menu (ESC)

S45503 Stainless Steel vs. 7022 Aluminum

S45503 stainless steel belongs to the iron alloys classification, while 7022 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S45503 stainless steel and the bottom bar is 7022 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 4.6 to 6.8
6.3 to 8.0
Fatigue Strength, MPa 710 to 800
140 to 170
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
26
Shear Strength, MPa 940 to 1070
290 to 320
Tensile Strength: Ultimate (UTS), MPa 1610 to 1850
490 to 540
Tensile Strength: Yield (Proof), MPa 1430 to 1700
390 to 460

Thermal Properties

Latent Heat of Fusion, J/g 270
380
Maximum Temperature: Mechanical, °C 760
200
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1400
480
Specific Heat Capacity, J/kg-K 470
870
Thermal Expansion, µm/m-K 11
24

Otherwise Unclassified Properties

Base Metal Price, % relative 15
10
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 3.4
8.5
Embodied Energy, MJ/kg 48
150
Embodied Water, L/kg 120
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82 to 110
29 to 40
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 57 to 65
47 to 51
Strength to Weight: Bending, points 39 to 43
47 to 50
Thermal Shock Resistance, points 56 to 64
21 to 23

Alloy Composition

Aluminum (Al), % 0
87.9 to 92.4
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 11 to 12.5
0.1 to 0.3
Copper (Cu), % 1.5 to 2.5
0.5 to 1.0
Iron (Fe), % 72.4 to 78.9
0 to 0.5
Magnesium (Mg), % 0
2.6 to 3.7
Manganese (Mn), % 0 to 0.5
0.1 to 0.4
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 7.5 to 9.5
0
Niobium (Nb), % 0.1 to 0.5
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 1.0 to 1.4
0 to 0.2
Zinc (Zn), % 0
4.3 to 5.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15