MakeItFrom.com
Menu (ESC)

S45503 Stainless Steel vs. 7108 Aluminum

S45503 stainless steel belongs to the iron alloys classification, while 7108 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S45503 stainless steel and the bottom bar is 7108 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 4.6 to 6.8
11
Fatigue Strength, MPa 710 to 800
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 940 to 1070
210
Tensile Strength: Ultimate (UTS), MPa 1610 to 1850
350
Tensile Strength: Yield (Proof), MPa 1430 to 1700
290

Thermal Properties

Latent Heat of Fusion, J/g 270
380
Maximum Temperature: Mechanical, °C 760
210
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1400
530
Specific Heat Capacity, J/kg-K 470
880
Thermal Expansion, µm/m-K 11
24

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 3.4
8.3
Embodied Energy, MJ/kg 48
150
Embodied Water, L/kg 120
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82 to 110
38
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 57 to 65
34
Strength to Weight: Bending, points 39 to 43
38
Thermal Shock Resistance, points 56 to 64
16

Alloy Composition

Aluminum (Al), % 0
92.4 to 94.7
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 1.5 to 2.5
0 to 0.050
Iron (Fe), % 72.4 to 78.9
0 to 0.1
Magnesium (Mg), % 0
0.7 to 1.4
Manganese (Mn), % 0 to 0.5
0 to 0.050
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 7.5 to 9.5
0
Niobium (Nb), % 0.1 to 0.5
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.2
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 1.0 to 1.4
0 to 0.050
Zinc (Zn), % 0
4.5 to 5.5
Zirconium (Zr), % 0
0.12 to 0.25
Residuals, % 0
0 to 0.15