MakeItFrom.com
Menu (ESC)

S46500 Stainless Steel vs. EN AC-42200 Aluminum

S46500 stainless steel belongs to the iron alloys classification, while EN AC-42200 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S46500 stainless steel and the bottom bar is EN AC-42200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 2.3 to 14
3.0 to 6.7
Fatigue Strength, MPa 550 to 890
86 to 90
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 1260 to 1930
320
Tensile Strength: Yield (Proof), MPa 1120 to 1810
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 280
500
Maximum Temperature: Mechanical, °C 780
170
Melting Completion (Liquidus), °C 1450
610
Melting Onset (Solidus), °C 1410
600
Specific Heat Capacity, J/kg-K 470
910
Thermal Expansion, µm/m-K 11
22

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 3.6
8.0
Embodied Energy, MJ/kg 51
150
Embodied Water, L/kg 120
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43 to 210
9.0 to 20
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 44 to 68
34 to 35
Strength to Weight: Bending, points 33 to 44
40 to 41
Thermal Shock Resistance, points 44 to 67
15

Alloy Composition

Aluminum (Al), % 0
91 to 93.1
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 72.6 to 76.1
0 to 0.19
Magnesium (Mg), % 0
0.45 to 0.7
Manganese (Mn), % 0 to 0.25
0 to 0.1
Molybdenum (Mo), % 0.75 to 1.3
0
Nickel (Ni), % 10.7 to 11.3
0
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.25
6.5 to 7.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 1.5 to 1.8
0 to 0.25
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1