MakeItFrom.com
Menu (ESC)

S46800 Stainless Steel vs. AISI 301 Stainless Steel

Both S46800 stainless steel and AISI 301 stainless steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S46800 stainless steel and the bottom bar is AISI 301 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
190 to 440
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
7.4 to 46
Fatigue Strength, MPa 160
210 to 600
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 300
410 to 860
Tensile Strength: Ultimate (UTS), MPa 470
590 to 1460
Tensile Strength: Yield (Proof), MPa 230
230 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 500
410
Maximum Temperature: Mechanical, °C 920
840
Melting Completion (Liquidus), °C 1440
1420
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 23
16
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 12
13
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 37
39
Embodied Water, L/kg 130
130

Common Calculations

PREN (Pitting Resistance) 19
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98
99 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 130
130 to 2970
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
21 to 52
Strength to Weight: Bending, points 18
20 to 37
Thermal Diffusivity, mm2/s 6.1
4.2
Thermal Shock Resistance, points 16
12 to 31

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.15
Chromium (Cr), % 18 to 20
16 to 18
Iron (Fe), % 76.5 to 81.8
70.7 to 78
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 0 to 0.5
6.0 to 8.0
Niobium (Nb), % 0.1 to 0.6
0
Nitrogen (N), % 0 to 0.030
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.070 to 0.3
0