MakeItFrom.com
Menu (ESC)

S46800 Stainless Steel vs. AISI 304 Stainless Steel

Both S46800 stainless steel and AISI 304 stainless steel are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S46800 stainless steel and the bottom bar is AISI 304 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
170 to 360
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
8.0 to 43
Fatigue Strength, MPa 160
210 to 440
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 300
400 to 690
Tensile Strength: Ultimate (UTS), MPa 470
580 to 1180
Tensile Strength: Yield (Proof), MPa 230
230 to 860

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 500
420
Maximum Temperature: Mechanical, °C 920
710
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 23
16
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 12
15
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 37
43
Embodied Water, L/kg 130
150

Common Calculations

PREN (Pitting Resistance) 19
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98
86 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 130
140 to 1870
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
21 to 42
Strength to Weight: Bending, points 18
20 to 32
Thermal Diffusivity, mm2/s 6.1
4.2
Thermal Shock Resistance, points 16
12 to 25

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 18 to 20
18 to 20
Iron (Fe), % 76.5 to 81.8
66.5 to 74
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 0 to 0.5
8.0 to 10.5
Niobium (Nb), % 0.1 to 0.6
0
Nitrogen (N), % 0 to 0.030
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.070 to 0.3
0