MakeItFrom.com
Menu (ESC)

S46800 Stainless Steel vs. ASTM A242 HSLA Steel

Both S46800 stainless steel and ASTM A242 HSLA steel are iron alloys. They have 80% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S46800 stainless steel and the bottom bar is ASTM A242 HSLA steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
150
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
22
Fatigue Strength, MPa 160
230
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 300
310
Tensile Strength: Ultimate (UTS), MPa 470
490
Tensile Strength: Yield (Proof), MPa 230
330

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 920
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 23
52
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 12
1.9
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 37
18
Embodied Water, L/kg 130
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98
95
Resilience: Unit (Modulus of Resilience), kJ/m3 130
290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
17
Strength to Weight: Bending, points 18
17
Thermal Diffusivity, mm2/s 6.1
14
Thermal Shock Resistance, points 16
14

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.15
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
0.2 to 0.45
Iron (Fe), % 76.5 to 81.8
98.2 to 99.8
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.1 to 0.6
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.15
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0 to 0.050
Titanium (Ti), % 0.070 to 0.3
0