MakeItFrom.com
Menu (ESC)

S46800 Stainless Steel vs. EN 1.4621 Stainless Steel

Both S46800 stainless steel and EN 1.4621 stainless steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S46800 stainless steel and the bottom bar is EN 1.4621 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
25
Fatigue Strength, MPa 160
190
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
78
Shear Strength, MPa 300
320
Tensile Strength: Ultimate (UTS), MPa 470
500
Tensile Strength: Yield (Proof), MPa 230
270

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 500
510
Maximum Temperature: Mechanical, °C 920
970
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 23
21
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 12
14
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 37
41
Embodied Water, L/kg 130
140

Common Calculations

PREN (Pitting Resistance) 19
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98
110
Resilience: Unit (Modulus of Resilience), kJ/m3 130
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
18
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 6.1
5.7
Thermal Shock Resistance, points 16
17

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 18 to 20
20 to 21.5
Copper (Cu), % 0
0.1 to 1.0
Iron (Fe), % 76.5 to 81.8
74.4 to 79.7
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.1 to 0.6
0.2 to 1.0
Nitrogen (N), % 0 to 0.030
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.070 to 0.3
0