MakeItFrom.com
Menu (ESC)

S46800 Stainless Steel vs. SAE-AISI 1060 Steel

Both S46800 stainless steel and SAE-AISI 1060 steel are iron alloys. They have 80% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S46800 stainless steel and the bottom bar is SAE-AISI 1060 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
180 to 220
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
10 to 13
Fatigue Strength, MPa 160
260 to 340
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
72
Shear Strength, MPa 300
370 to 450
Tensile Strength: Ultimate (UTS), MPa 470
620 to 740
Tensile Strength: Yield (Proof), MPa 230
400 to 540

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 920
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 23
51
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
9.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
11

Otherwise Unclassified Properties

Base Metal Price, % relative 12
1.8
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 37
19
Embodied Water, L/kg 130
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98
58 to 82
Resilience: Unit (Modulus of Resilience), kJ/m3 130
430 to 790
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
22 to 26
Strength to Weight: Bending, points 18
21 to 23
Thermal Diffusivity, mm2/s 6.1
14
Thermal Shock Resistance, points 16
20 to 24

Alloy Composition

Carbon (C), % 0 to 0.030
0.55 to 0.65
Chromium (Cr), % 18 to 20
0
Iron (Fe), % 76.5 to 81.8
98.4 to 98.9
Manganese (Mn), % 0 to 1.0
0.6 to 0.9
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.1 to 0.6
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0 to 0.050
Titanium (Ti), % 0.070 to 0.3
0