MakeItFrom.com
Menu (ESC)

S46800 Stainless Steel vs. C21000 Brass

S46800 stainless steel belongs to the iron alloys classification, while C21000 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S46800 stainless steel and the bottom bar is C21000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 25
2.9 to 50
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 79
36 to 73
Shear Modulus, GPa 77
43
Shear Strength, MPa 300
180 to 280
Tensile Strength: Ultimate (UTS), MPa 470
240 to 450
Tensile Strength: Yield (Proof), MPa 230
69 to 440

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 920
190
Melting Completion (Liquidus), °C 1440
1070
Melting Onset (Solidus), °C 1400
1050
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 23
230
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
56
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
57

Otherwise Unclassified Properties

Base Metal Price, % relative 12
30
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 37
42
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98
13 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 130
21 to 830
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 17
7.4 to 14
Strength to Weight: Bending, points 18
9.6 to 15
Thermal Diffusivity, mm2/s 6.1
69
Thermal Shock Resistance, points 16
8.1 to 15

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
94 to 96
Iron (Fe), % 76.5 to 81.8
0 to 0.050
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.1 to 0.6
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.070 to 0.3
0
Zinc (Zn), % 0
3.7 to 6.0
Residuals, % 0
0 to 0.2