MakeItFrom.com
Menu (ESC)

S46800 Stainless Steel vs. C82200 Copper

S46800 stainless steel belongs to the iron alloys classification, while C82200 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S46800 stainless steel and the bottom bar is C82200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 25
8.0 to 20
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 79
60 to 96
Shear Modulus, GPa 77
44
Tensile Strength: Ultimate (UTS), MPa 470
390 to 660
Tensile Strength: Yield (Proof), MPa 230
210 to 520

Thermal Properties

Latent Heat of Fusion, J/g 290
220
Maximum Temperature: Mechanical, °C 920
230
Melting Completion (Liquidus), °C 1440
1080
Melting Onset (Solidus), °C 1400
1040
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 23
180
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
45
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
46

Otherwise Unclassified Properties

Base Metal Price, % relative 12
55
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.6
4.8
Embodied Energy, MJ/kg 37
74
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98
49 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 130
180 to 1130
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 17
12 to 20
Strength to Weight: Bending, points 18
13 to 19
Thermal Diffusivity, mm2/s 6.1
53
Thermal Shock Resistance, points 16
14 to 23

Alloy Composition

Beryllium (Be), % 0
0.35 to 0.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0
97.4 to 98.7
Iron (Fe), % 76.5 to 81.8
0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.5
1.0 to 2.0
Niobium (Nb), % 0.1 to 0.6
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.070 to 0.3
0
Residuals, % 0
0 to 0.5