MakeItFrom.com
Menu (ESC)

S46800 Stainless Steel vs. S43037 Stainless Steel

Both S46800 stainless steel and S43037 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 98% of their average alloy composition in common.

For each property being compared, the top bar is S46800 stainless steel and the bottom bar is S43037 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
25
Fatigue Strength, MPa 160
160
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 79
77
Shear Modulus, GPa 77
77
Shear Strength, MPa 300
260
Tensile Strength: Ultimate (UTS), MPa 470
410
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 500
510
Maximum Temperature: Mechanical, °C 920
880
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 23
25
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.0
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.3
Embodied Energy, MJ/kg 37
32
Embodied Water, L/kg 130
120

Common Calculations

PREN (Pitting Resistance) 19
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98
88
Resilience: Unit (Modulus of Resilience), kJ/m3 130
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
15
Strength to Weight: Bending, points 18
16
Thermal Diffusivity, mm2/s 6.1
6.7
Thermal Shock Resistance, points 16
14

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 18 to 20
16 to 19
Iron (Fe), % 76.5 to 81.8
77.9 to 83.9
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.1 to 0.6
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.070 to 0.3
0.1 to 1.0